Natural language query to search for
Root directory path of the project (used to compute project ID)
Search options
Optionaldimensions?: numberEmbedding dimensions (default: 1536)
OptionalfileFilter results by file extensions (e.g., ['.ts', '.js'])
Optionallimit?: numberMaximum number of results to return (default: 10)
Optionalmodel?: stringEmbedding model to use (default: 'text-embedding-3-small')
Optionalthreshold?: numberMinimum similarity score 0-1 (default: 0.3)
Markdown-formatted search results with relevance scores
// Query a previously embedded project
const markdown = await query_project(
"How does authentication work?",
"/path/to/project",
{ limit: 5, threshold: 0.6 }
);
console.log(markdown);
// Filter by file type
const results = await query_project(
"database connection logic",
"/home/user/my-app",
{
limit: 3,
threshold: 0.5,
fileExtensions: ['.ts', '.js']
}
);
// Full workflow: embed, store, then query
await embed_and_store_directory('/path/to/project', {
fileExtensions: ['.ts'],
costLimit: 1.0
});
const results = await query_project(
"error handling patterns",
"/path/to/project",
{ limit: 10 }
);
console.log(results);
Query a stored project by directory path and return results as Markdown
This is a convenience function that:
The project must have been previously embedded and stored using embed_and_store_directory().