Parameters
- db: Surreal
- query: string
- limit: number = 5
Returns Promise<{
context: string;
eids: string[];
embedding: number[];
nodes: NodeResult[];
searchResults: node.introspection.query.SimilarityResult[];
}>
Object with all search data including:
- embedding: The generated query embedding vector
- searchResults: Raw search results with distance scores and nodes
- eids: Array of embedding cache record IDs
- nodes: Array of matched node data
- context: Formatted string ready for LLM consumption
Complete vector search with context generation This combines all steps: embedding generation, search, node retrieval, and context formatting